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STATISTICAL CALCULATION OF THE SELF-DIFFUSION COEFFICIENTS OF 

DISORDERED SUBSTITUTIONAL BINARY SOLID SOLUTIONS 

~. T. Bruk-Levinson and L. P. Orlov UDC 538.9:548.526 

We obtain and analyze approximate analytical expressions for the self-diffusion 
coefficients of a disordered substitutional binary solid solution. 

A topical problem of the theory remains the microcopic justification for the phenomeno- 
logical values of the transport coefficients including also the diffusion coefficient. All 
realistic substances are, in practice, solutions, i.e., to some degree, they must contain 
impurities. It is known [i, 2] that in this case, the diffusion coefficient is determined 
by the self-diffusion coefficients of the components. Consequently, the above problem re- 
duces in practice to a statistical calculation of the self-diffusion coefficients. 

In disordered substitutional binary solid solutions, the dominant mechanism of the dif- 
fusion processes is the monovacancy mechanism [3]. Noting the earlier results concerning 
self-diffusion in pure crystals with vacancies [4] and the structure of binary solid solu- 
tion with vacancies [5, 6], this fact makes it possible to construct and realize an algorithm 
for the required statistical mechanical calculation of the self-diffusion coefficients of 
the components of the disordered substitutional solid solution. The starting premises of 
this algorithm are contained in the statistical method of conditional distributions [7] and 
in the random-walk theory in its statistical interpretation [8, 9]. 

SELF-DIFFUSION COEFFICIENTS OF A BINARY SYSTEM 

For a crystalline binary system which consists of components A and B for the case of 
isotropic cubic lattice the self-diffusion coefficients are [8] 

DL=(1/6)kL Rz (L=A, B), (1) 

where k L is the jump frequency of atoms of type L, and R is the length of the jump (the 
nearest neighbor separation in the lattice). The elementary self-diffusion act in the mono- 
vacancy mechanism is a jump of an atom from an occupied site to a neighboring vacant site. 
This jump requires the overcoming of a potential barrier which is associated with the force 
field of other atoms. Consequently, the elementary acts of self-diffusion of an atom takes 
place only if the i-th site is filled, the j-th site is vacant and the atom on site i is 
activated with a sufficiently high kinetic energy which makes it possible for the atom to 
leave its site. This situation can be described by the probability density of observing 
in the neighborhood of site i near a point with coordinates qi L an atom of type L with 
momentum in the interval from P# to p#~-dp~ in the neighborhood of site i near a point 
with coordinates Fi;(q#, p#) under the condition that the neighboring site j is vacant. 
We denote this probability density by Sij. The self-diffusion process contains contributions 
only from atoms which reach the boundary Sij between the unit cells containing the filled 
and empty sites with a positive projection of the momentum piz L onto the z axis which passes 
through the full and empty sites. Therefore, the jump frequency can be written as 

j=l --~ --~ 0 Si] 

where ML is the mass of an atom of type L, and z x is the number of nearest neighbors. 
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Since the distributions of moments and coordinates of the atoms are independent in the 
classical equilibrium statistical mechanics, the probability density Fij(q#, P# )~deeomposes 
into independent factors 

F~j (qf, p~ ) = Fit (q~) F (p~). (3) 

The first and second factors characterize the distribution in the configuration and momentum 
space, respectively. It is easy to obtain an explicit expression for the secnd factor. It 
represents the Maxwell distribution 

F (p~) = [~/(2~ML)] a/2 exp {-- ~ (p~)Z/(2ML)} (4) 

at temperature 1/6. The function F~(q~), is an inherent component of the hierarchy of 
partial distribution functions in the formalism of conditional distributions [7]. 

STATISTICAL MODEL OF A DISORDERED BINARY CRYSTAL WITH VACANCIES 

Let us suppose that a binary system of NA atoms of type A and NB atoms of type B occu- 
pies volume V. We divide this volume into M(~NA + NB) geometrically identical cells of volume 
w = V/M each. In the lowest approximation of the method of conditional distributions [7], 
the statistical description of the system under consideration can be restricted to such 
microstates of the binary crystal for which each cell is either empty or contains one atom 
of type L (L = A, B). From the physical viewpoint, by interpreting the cells as the 
Wigner-Seitz cells, the principle of selection of states then corresponds to the disordered 
binary substitutional solid solution with vacancies. 

Once the volume of the system has been decomposed into cells and restrictions have been 
imposed on the selection of states, the following stage in the construction of the statis- 
tical model consists of introducing the sequence of distribution functions. The state of 
one cell is completely characterized by two unary distribution functions Fi and F~(q~). 
The first of these functions represents the probability that the cell is empty, and the 
second is the probability density that inside cell i, there is an atom of type L in the 
neighborhood of a point with coordinatesq~ . Clearly, for an infinite uniform system, Fi 
for any i e [i, M] is equal to the lattice concentration of vacancies m0, i.e., to the ratio 
of the number of empty cells N O to the total number of cells M. 

With allowance for all possible variants, the state of a pair of cells is character- 
ized by three binary distribution functions Fi t, Fij(q#) and Fii (q#, q~) . The function Fij 
is equal to the probability that both cells i and j are simultaneously empty. The meaning 

F L of the function ij(qi), (which is essential for the calculation of the self-diffusion coef- 
ficients as is clear from relation (3)), is that it determines the probability density that 
atom of type L is in the cell i in the neighborhood of a point with corodinates q~, and the 
cell j is empty. Finally, the function Fij(q~, q~ gives the probability density that an 
atom of type L is in cell i in the neighborhood of a point with coordinates q# and, simul- 
taneously, an atom of type K is in cell j in the neighborhood of a point with coordinates 
K. 

Analogously, one can introduce also higher-order distribution function However, this 
is not necessary if only pairwise interaction are taken into account. 

By definition, the above unary and binary distribution functions satisfy the integral 
equations 

F i +  ~ Sdq~Fi(q~)= 1, 
L = A  , B i 

' L L fiiq- ~ .IdqiFij(qi)----Fi' 
L=A,B j 

(5) 

Fij (q~) -]- ~ S dq~ Fij (q~, q~) = F i (q~)- 
�9 L=.,B: (6) 

The integration in the equations is carried out over the volume of the cell whose number 
is under the integral sign. 

The unary distribution functions are related to the average-force potentials (AFP) 
~i(q~) and quasipotentials (QP) ~ by the following relations [5]: 

F i = (mo/Qo) exp {-- ~i}, Fi (q~) = (mK/Q K) exp {-- ~ (q~)}, (7) 
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where m K are the lattice concentrations of states of the full cells which are equal to the 
ratio of the number of full cells N K, containing one atom of type K, to the total number of 
cells M, and the normalization constants 

Qo = exp {-- ~% }, QK = I dq~ exp {-- }% (qf)}. 
i 

Clearly, the sum of the lattice concentration of states of the filled cells and of the 
vacancy concentration is unity. 

The structure of the binary distribution functions in the quasichemical approximation 
[7] which corresponds to the neglect of correlations between cells of order higher than 
second, has also a simple and unambiguous character [5]: 

F u = exp {~ [%,j + ~j,i]} FiF~, Fij (q~) = exp {~ [~i,J (q~) + %,~]} Fi (q~) Fs. (8) 

F~j (q~, q~ ) = exp {~ [%d (q~) + ~J,~ (q~) - -  ~ (q~, q~ )]} & (q~) F~ (q~). (9) 

Relations (8) and (9) contain the potential of pairwise interactionof atoms of type K and L: 
(q~, q#) , and also the elementary components of AFP %J(q~) and QP %,j which are re- 

lated to the full AFP and QP by the additive relations [i0] 

M M 

X'  %,m (q~) = % (q~), ~ %,m = ~i. (10)  z_~ 

The free energy of the system under consideration is [5] 

F = - -  (M/ ~ )  [m0 In (Oo/mo) + m A In (QA/mA) + m~ In (QB/mB)]. 

I t  i s  a minimum for  the  l a t t i c e  c o n c e n t r a t i o n  of vacanc ies  
mo= exp {-- ~[~i-}- Pw]}, ( i i )  

where P = -(3F/~V)~,m0 represents the pressure. 

Substitution of expressions (8) and (9) into Eqs. (5) and (6) with allowance for the 
relations (i0) leads to a system of integral equations with respect to the elementary com- 
ponents of AFP and QP: 

exp {-- ~%,j} = exp {~j,~} Fj + 2 ~ dq} exp {~j, i  (q#)} Fj (q}), (12) 
L = A , B  ] 

exp {-- ~,.y (q~)} = exp {~j,~} Fj --}- X ~ dq} exp { ~ [~J,i (q}) --  * (q~, q})]} Fg (q~), 
L=A,B/ (13)  

whose solution is eventually connected to computing the seZf~dilfusion coefficient. 

APPROXIMATE ANALYTICAL SOLUTION OF THE SYSTEM OF NONLINEAR INTEGRAL EQUATIONS 

The system of equations (12)-(13) can be solved only numerically (see [7]). However, 
the problem is considerably simplified if we note the following two physical facts. First, 
the vacancy concentration m 0 in the binary crystal is very small and is equal, in the order 
of magnitude, to i0-4-i0 -3 even at temperatures close to the melting temperature [ii]. Second, 
by virtue of the predominant localization of the atoms in the sites of the crystal lattice, 
the unary distribution function F~(q~) must have a sharp maximum in a lattice point. 

The structure of the system of equations (12)-(13) suggests the notation 

�9 = exp {-- ~},  K~-~- exp {-- ~0}. 

In this notation, the system (12)-(13) takes the form 

�9 *,'= mo/*',t + X mL[.[dq}*,(qf)/*J.,(q})]/S dq},,(q}), 
L=A,B j i 

*i,J(q~) = mo/*j,i + 2 mL [] dq~K(q~, q~-)*j(q~)/,~,i(qf) ] / f  dqf,j(q~). 
L = A  , 13 ] ] 

The smallness of the vacancy concentration makes it possible to seek the solution of 
the latter system of equations in the form of a power series in terms of m 0. In the first 
approximation we assume that m 0 = 0. Then mK = nK = NK/(NA + NB) and 
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L=A, B i t. 

*,.i(q~) = Z n L [ . f  dq~K(q~, ql)*l(q~)/*J.~(q~)]/! dq~,i(q~-). 
L=A, B I I 

(14) 

(15) 

Using the fact that the unary function is similar to the delta function one can use the Laplace 
method [12] in the calculation of the integrals on the right hand sides of relations (14) and 
(15). Restricting attention to the principal term of the asymptotic series, we obtain 

~' ,J= "~ nL/~bi"(l~)' (16) 
L=A,B 

9~,: (qf) = ~ nLK(q f ,  l~)/*j,i (1~), (17) 
L=A.B 

where I~ are the coordinates of the lattice site. 

Consequently, the elementary components of AFP and QP can be expressed in terms of the 
molar fractions of the components nL, the interatomic interaction potentials �9 (qf, q~) and 
their proper values in the lattice points. To find these we set in (16) and (17) qf = If 
and simultaneously we introduce the notation 

,~.j = ,j .~-=,o, ,~,j(l~)= ,A~(I~)---,~, KOf, i~)----G~. 

In the nearest-neighbor approximation we then obtain the system of equations 

whose solution has the form 

where 

~AB = 

L=A, B 

~K = ~z~ nLKKL/I~L ' 
L=A, B 

*A = (nAKaA + n~KAB/%B )l/2, 

~B = (nAKAJ~AB 3c nBKBB )l /2 , 

4n A nBKAAKBB ]1/21 (~-~)G~{I + [1 + 
2nd(~ (~-~)~z(~] I 

(18) 

It is important to emphasize that the obtained solutions are valid for any finite concentra- 
tions of components. 

CALCULATION OF THE SELF-DIFFUSION COEFFICIENTS 

Using expressions (2)-(4), (7) and (8), the jump frequency k L can be written as, after 
integration over momenta, 

k L = zl ( 2 ~ M  L ) - 1 / 2 m o n L ~  S dq~ [~ (qf)/~i,~ (qf)]/! dqf,i (qf). (19) 
Si] i 

Expression (19) contains two integrals: a two-dimensional integral over the common boundary 
of the cells Sij, and a three-dimensional integral over the volume of cell i. Both these 
integrals can be calculated by the Laplace method. 

The evaluation of the volume integral gives 

dqf~, (qf) = [2n/(fkYL)]s/~, (If) = [2~/(~] ~ ,  
i 

where ~L = - -  ~ -xA In ~ i  ( I f ) / 3  
ator. 

(20) 

The symbol A in the last expression denotes the Laplace oper- 
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Fig. i. Concentration dependence of the dimensionless activation 
energies EL (a), effective frequencies ~L (b) and the self-diffu- 
sion coefficients DL (c) for the solution of argon in krypton. 

In the integration over the boundary of the cell Sij, it is necessary to take into ac- 
count the maximum of the integrand ~(q~ )/~i,jiq~ ) in point with coordinates si~-(|j--li)/2, 
which lies in the center of the segment which connects the sites i and j. This function 
reaches maxim~un with respect to the neighborhood of the spoint with coordiantes si which 
belongs to the boundary of the cells. This is physically due to the fact that two neighbor- 
ing positions of equilibrium are separated by an activation barrier. By positioning the 
coordinate axes x and y in the plane of the boundary between the cells i and j we obtain 

dq~ dq~,~ (q#)/,~.~ (q#) = [2n/(~a~))] ,~ (st)/,~.j (#), (21) 
si] 

where 

~[,~ = H -1 {v,2x In [*i (s~)/,i,j (s~)] v? la [ , ,  (s~)/,~,j (s~)]}I/2 (v,. = O/Oq,). ty 

The v a l u e s  o f  t h e  f u n c t i o n s  ~)(q~) and t h e i r  d e r i v a t i v e s  in  a p o i n t  can be c a l c u l a t e d  by 
u s i n g  t h e  e x p l i c i t  e x p r e s s i o n s  (15) f o r  t h e s e  q u a n t i t i e s .  

The o b t a i n e d  e x p r e s s i o n s  (20)  and (21)  make i t  p o s s i b l e  t o  w r i t e  t h e  jump f r e q u e n c y  
(19)  in  t h e  t r a d i t i o n a l  A r r h e n i u s  form 

k t = v L exp {-- HEL}, 

where t h e  e f f e c t i v e  f r e q u e n c y  i s  

v t  = zln, L (aL/ML )l/2 [aL/(2aa(LS))] 

and the activation energy for self-diffusion 

E L = r + Pw + {[~ (s#) - -  ~ . j  (s~L)] - -  [~ OiL) - -  ~.J 0#)]} + [-- (~.J 0~) + ~j.~)l- 

In accordance with (Ii), the quantity gv = ~i + Pw in the last expression represents the 
formation energy of the vacancy. The remaining part of EL can be interpreted as the activa- 
tion energy for migration. This term again includes two terms: i) In braces, there is the 
height of the potential barrier which is overcome by the atom when moving from the lattice 
point I# to the saddle point s t ; 2) In the square brackets, there is the binding energy of 
the atom and the vacancy when there is an atom in the lattice point (this quantity can be 
considered as a correction to the barrier height). 

DISCUSSION OF THE RESULTS 

To illustrate the obtained approximate analytical results we carried out a numerical 
calculation of the concentration dependence of the self-diffusion characteristics in the 
triple points of the pure matrix components using the Lennary-Jones 6-12 potential for the 
substitutional solid solutions of argon in krypton and krypton in argon. The first solu- 
tion can be considered as a light impurity in the matrix of heavy atoms, and the second as 
a heavy impurity in the matrix of light atoms. 
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Fig. 2. Concentration dependence of the dimensionless activation 
energies EL (a), effective frequencies ~L (b) and the self-diffu- 
sion coefficients DL (c) for the solution of krypton in argon. 

The graphs shows that when a light impurity is added the activation energy for self- 
diffusion of both components decrease (Fig. la) and the effective frequencies increase (Fig. 
ib). The self-diffusion coefficients of both components therefore increase with increasing 
concentration of the impurity particles (Fig. ic), but they differ by five orders of magni- 
tude. 

The addition of a heavy impurity practically does not change the activation energy (Fig. 
2a) but leads to an increase of the effective frequencies (Fig. 2b)0 As a result, the self- 
diffusion coefficients of both components also increase with increasing impurity concentra- 
tion (Fig. 2c) and again differ considerably (approximately by three orders of magnitude). 

NOTATION 

Here, dL is the self-diffusion coefficient of component i: kL, the jump frequency of 
atoms of type L; i and j0 number the cells and lattice sites; q#= {x#, 9#,z#} , coordinates 
of an atom of type L; p~= {p~. P~ pL =U' iz} , components of momentum of atoms of type L; 8 in- 
verse absolute temperature; w, volume of the unit cell; m0, lattice concentration of vacan- 
cies; mL, lattice concentrations of the states of cells which are filled with one atoms of 
type L; ~i(q#) , average-force potentials; ~i, quasipotentials; @(q~, q#) , potentials of 
the pairwise interaction of the atoms; P, pressure; andnL, molar concentration of component 
L. 
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